{ "cells": [ { "cell_type": "markdown", "id": "e1ab7cf7-6cf4-4ba6-b3a1-9c4d3d4aa8e9", "metadata": {}, "source": [ "# Bienvenue dans Jupyter\n", "\n", "Cette cellule contient du texte en **Markdown**" ] }, { "cell_type": "code", "execution_count": 3, "id": "e7b050ca-32bd-4612-b34e-74b6664fc089", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0\n", "1.0\n" ] } ], "source": [ "from math import sin, cos\n", "print(sin(0))\n", "print(cos(0))" ] }, { "cell_type": "code", "execution_count": 1, "id": "65ea6cd6-a452-45d3-9274-4247e59a5ac3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 5 8 13 21]\n" ] } ], "source": [ "import numpy as np\n", "\n", "a1 = np.array([5, 8, 13, 21])\n", "print(a1)" ] }, { "cell_type": "code", "execution_count": 9, "id": "d6a2aa45-03bd-4e52-8f77-98bd1bb6751a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1 3 5]\n", " [ 8 11 14]\n", " [18 22 26]]\n", "int32\n", "9\n", "(3, 3)\n", "14\n", "[[ 5.2 15.6 26. ]\n", " [ 41.6 57.2 72.8]\n", " [ 93.6 114.4 135.2]]\n" ] } ], "source": [ "import numpy as np\n", "\n", "a1 = np.array([[1, 3, 5], [8, 11, 14], [18, 22, 26]], dtype=\"int32\")\n", "print(a1)\n", "# Afficher le nom du type des données du tableau\n", "print(a1.dtype)\n", "# Afficher le nombre de cellules au total dans le tableau\n", "print(a1.size)\n", "# Afficher les dimensions du tableau\n", "print(a1.shape)\n", "print(a1[1][2])\n", "\n", "# Appliquer un calcul simple à tous les éléments du tableau\n", "a2 = a1 * 5.2\n", "print(a2)" ] }, { "cell_type": "code", "execution_count": 5, "id": "c6f47454-b849-47ad-abfe-a66ca774d038", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a2 = np.arange(0, 10, 1)\n", "a2" ] }, { "cell_type": "code", "execution_count": 14, "id": "b9dca432-8fbf-4370-9917-0c8ad5e7ad38", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 34. 71.5]\n", " [ 59. 142. ]]\n" ] } ], "source": [ "m1 = np.array([[5, 8], [4, 17]])\n", "m2 = np.array([[2, 1.5], [3, 8]])\n", "print(m1 @ m2)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 5 }