Add source example files
This commit is contained in:
11
source/pandas/01-pandas-manual/01-series-demo.py
Normal file
11
source/pandas/01-pandas-manual/01-series-demo.py
Normal file
@ -0,0 +1,11 @@
|
||||
"""Define simple Series objects by hand."""
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Creating a series with coherent value type
|
||||
s1 = pd.Series([1, 3, 7, 9, 13, 15, 19, 21])
|
||||
|
||||
# Get the length of the series
|
||||
print(f"Size of the series: {len(s1)}")
|
||||
# Display the contents of s1
|
||||
print(s1)
|
35
source/pandas/01-pandas-manual/02-dataframe-demo.py
Normal file
35
source/pandas/01-pandas-manual/02-dataframe-demo.py
Normal file
@ -0,0 +1,35 @@
|
||||
"""Define simple DataFrame objects by hand."""
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Creating a series with coherent value type
|
||||
df1 = pd.DataFrame({"age": [25, 45, 65], "prenom": ["Pierre", "Paul", "Jacques"]})
|
||||
|
||||
# Get the column names of the dataframe
|
||||
print("Columns:", df1.columns.tolist())
|
||||
# Get the number of rows in the dataframe
|
||||
print(f"Size of the dataframe in rows: {len(df1)}")
|
||||
# Show the type of the columns
|
||||
print("Data type of columns (autodetected):")
|
||||
type_dict = df1.dtypes.to_dict()
|
||||
for column, dtype in type_dict.items():
|
||||
print(f"{column:<20} : {str(dtype):<20}")
|
||||
print("_" * 80)
|
||||
# Display the contents of the dataframe
|
||||
print(df1)
|
||||
|
||||
# Creating a series with coherent value type
|
||||
df2 = pd.DataFrame([[25, "Pierre"], [45, "Paul"], [65, "Jacques"]])
|
||||
|
||||
# Get the column names of the dataframe
|
||||
print("Columns:", df2.columns.tolist())
|
||||
# Get the number of rows in the dataframe
|
||||
print(f"Size of the dataframe in rows: {len(df2)}")
|
||||
# Show the type of the columns
|
||||
print("Data type of columns (autodetected):")
|
||||
type_dict = df2.dtypes.to_dict()
|
||||
for column, dtype in type_dict.items():
|
||||
print(f"{column:<20} : {str(dtype):<20}")
|
||||
print("_" * 80)
|
||||
# Display the contents of the dataframe
|
||||
print(df2)
|
27
source/pandas/01-pandas-manual/03-dataframe-index-demo.py
Normal file
27
source/pandas/01-pandas-manual/03-dataframe-index-demo.py
Normal file
@ -0,0 +1,27 @@
|
||||
"""
|
||||
Create a DataFrame and use indexes to
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
# Create a dataframe and associate an index to it
|
||||
df = pd.DataFrame(
|
||||
data={"name": ["Mac", "Ann", "Rob"], "age": [33, 44, 55]},
|
||||
index=["u1", "u2", "u3"] # as many values as rows
|
||||
)
|
||||
|
||||
# Show normal DataFrame
|
||||
print(df)
|
||||
|
||||
# Access one row using an index value
|
||||
print(df.loc["u1"])
|
||||
|
||||
# Access the same row using a numerical index
|
||||
print(df.iloc[0])
|
||||
|
||||
# Get a DataFrame with a selection of lines
|
||||
# To extract this, the selection of lines **must** be a list and not a tuple;
|
||||
# the tuple is used to select or slice in the other axis.
|
||||
print(df.loc[["u1", "u3", "u2"]])
|
||||
|
||||
# Show the index0
|
||||
print(df.index)
|
21
source/pandas/01-pandas-manual/04-dataframe-load-csv-url.py
Normal file
21
source/pandas/01-pandas-manual/04-dataframe-load-csv-url.py
Normal file
@ -0,0 +1,21 @@
|
||||
"""
|
||||
Read an online CSV file into a DataFrame.
|
||||
|
||||
Since the referenced file contains a datetime column, and by default
|
||||
read_csv does not interpret data from the text file, you have to replace
|
||||
some columns with their conversion as a correct dtype.
|
||||
|
||||
Or better, you can directly tell the read_csv function to interpret
|
||||
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
|
||||
url = "https://media.githubusercontent.com/media/datablist/sample-csv-files/main/files/customers/customers-100.csv"
|
||||
df = pd.read_csv(url, parse_dates=["Subscription Date"])
|
||||
print(df.to_string(max_cols=7))
|
||||
print(df.dtypes)
|
||||
|
||||
# Remplacer une colonne avec une conversionl
|
||||
df["Subscription Date"] = pd.to_datetime(df["Subscription Date"])
|
||||
print(df, df.dtypes)
|
14
source/pandas/01-pandas-manual/05-series-index.py
Normal file
14
source/pandas/01-pandas-manual/05-series-index.py
Normal file
@ -0,0 +1,14 @@
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == '__main__':
|
||||
df = pd.Series([1, 3, 2, 4, 2, 2, 2, 1, 1, 3])
|
||||
# Add an index to the series, that could be used to make a
|
||||
# temporal series.
|
||||
df.index = pd.Series([2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
|
||||
print(df)
|
||||
|
||||
|
||||
s = pd.Series([2, 5, 2, 6], index=pd.date_range("2023-01-01", "2023-01-10", 4))
|
||||
print(s)
|
||||
dr = pd.date_range("2023-01-01", "2023-01-10", 4)
|
||||
print(dr)
|
Reference in New Issue
Block a user