Add source example files

This commit is contained in:
2025-07-12 18:43:56 +02:00
parent 11d6846f49
commit d0bcfcf8f1
62 changed files with 40101 additions and 161 deletions

View File

@ -0,0 +1,120 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cc5b1b45-a3dd-4f89-a731-9918a1a0366a",
"metadata": {},
"source": [
"Texte de cellule au format **Markdown**.\n",
"\n",
"Permet de documenter le carnet et de laisser des notes."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "040834c2-ab4f-456f-9cc8-8c44fdf257d6",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "09003cbc-a660-4e9a-82a3-7d66babfa235",
"metadata": {
"editable": true,
"scrolled": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'file.csv'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfile.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCome on\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/Code/python/.venv/datascience/lib/python3.11/site-packages/pandas/io/parsers/readers.py:948\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 935\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 936\u001b[0m dialect,\n\u001b[1;32m 937\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 944\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 945\u001b[0m )\n\u001b[1;32m 946\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 948\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Code/python/.venv/datascience/lib/python3.11/site-packages/pandas/io/parsers/readers.py:611\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 608\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 610\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 611\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 613\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 614\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
"File \u001b[0;32m~/Code/python/.venv/datascience/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1448\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1445\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1447\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Code/python/.venv/datascience/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1705\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1703\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m 1704\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1705\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1706\u001b[0m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1707\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1708\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1709\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1710\u001b[0m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1711\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1712\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1713\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1714\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1715\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1716\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
"File \u001b[0;32m~/Code/python/.venv/datascience/lib/python3.11/site-packages/pandas/io/common.py:863\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 858\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 859\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m 860\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m 861\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[1;32m 862\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[0;32m--> 863\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[1;32m 864\u001b[0m handle,\n\u001b[1;32m 865\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[1;32m 866\u001b[0m encoding\u001b[38;5;241m=\u001b[39mioargs\u001b[38;5;241m.\u001b[39mencoding,\n\u001b[1;32m 867\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[1;32m 868\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 869\u001b[0m )\n\u001b[1;32m 870\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 871\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[1;32m 872\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'file.csv'"
]
}
],
"source": [
"df = pd.read_csv(\"file.csv\")\n",
"print(\"Come on\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a372749f-4b26-4e36-8a1e-627c50a274f2",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "59e5f06b-654c-47ce-a8f0-0e062726d913",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "586b204b-85ae-496f-849f-d8fc943f048e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "2060d594-1231-4a97-a7ea-b86365ebefcf",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "44badf67-dc1e-4d81-8ab3-2af13d310be0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,161 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"id": "e328e5fa-ee7e-4045-9164-624573b73562",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 1\n",
"1 3\n",
"2 7\n",
"3 8\n",
"dtype: int64\n",
"7\n",
"int64\n",
"[1 3 7 8]\n",
"None\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"s1 = pd.Series([1, 3, 7, 8])\n",
"print(s1)\n",
"print(s1[2])\n",
"print(s1.dtype)\n",
"print(s1.values)\n",
"print(s1.name)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4f15f4f9-2580-41c3-a26c-80152d739ab5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 0 1\n",
"0 Paul 1974\n",
"1 Quentin 1991\n",
"2 Aude 1987\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"dataframe = pd.DataFrame(data=[[\"Paul\", 1974], [\"Quentin\", 1991], [\"Aude\", 1987]])\n",
"print(dataframe)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1f2c617f-3ee6-4254-ba1d-1c517e4be013",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Alain\n",
"Index(['U1', 'U2', 'U3', 'U4', 'U5', 'U6'], dtype='object')\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"s1 = pd.Series(data=[\"Alain\", \"Lucie\", \"Gilles\", \"André\", \"Zoé\", \"Paul\"], index=[\"U1\", \"U2\", \"U3\", \"U4\", \"U5\", \"U6\"])\n",
"print(s1[\"U1\"]) # Affiche la valeur \"Alain\" en extrayant depuis l'index \"U1\"\n",
"print(s1.index)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "008357ca-4a95-48bb-a411-aaf2b6182ae2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 1\n",
"1 3\n",
"2 2\n",
"3 3\n",
"dtype: int64\n",
"0 False\n",
"1 False\n",
"2 True\n",
"3 True\n",
"dtype: bool\n",
"False\n",
"True\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"s1 = pd.Series([1, 3, 7, 8])\n",
"print(s1 % 5)\n",
"print(s1 * 2 - 7 > 4)\n",
"print(8 in s1) # C'est faux car \"in\" cherche uniquement dans l'index (comme avec les dict)\n",
"print(8 in s1.values) # C'est vrai car la valeur 8 est présente dans le tableau de valeurs"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "b4cb5f27-485d-4d79-bf4b-a6dcbfc906b6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"19 in {\"plop\": 19, \"plip\": 99}"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,130 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2023-11-03T14:40:42.068348908Z",
"start_time": "2023-11-03T14:40:41.997684480Z"
}
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "markdown",
"source": [
"## Générer des séquences avec Numpy"
],
"metadata": {
"collapsed": false
},
"id": "6d65456282534466"
},
{
"cell_type": "markdown",
"source": [
"### Tableaux de nombres aléatoires"
],
"metadata": {
"collapsed": false
},
"id": "adb17684a78c829f"
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 6.35623608 0.72967602 2.5754436 ]\n",
" [-2.88764467 -1.78055093 2.04930599]\n",
" [ 8.1408593 9.88370176 13.06873958]\n",
" [12.10708755 9.83391867 1.11422918]\n",
" [ 1.93749749 8.25277919 12.33940067]\n",
" [ 9.29587924 10.28278442 7.00934509]\n",
" [10.95330272 2.24590563 2.6462974 ]\n",
" [ 7.82980317 10.88657225 6.50770094]]\n"
]
}
],
"source": [
"import numpy as np\n",
"normal1 = np.random.normal(scale=5.0, loc=5.0, size=(8, 3)) # loi Gaussienne, 3x3, de 0 à 10.0\n",
"print(normal1)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-11-03T14:44:17.624267987Z",
"start_time": "2023-11-03T14:44:17.582546621Z"
}
},
"id": "7790b82b0805c928"
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1.14733876 4.66776332 0.07763899 0.41786323 4.55656594 2.6577\n",
" 0.08228448 0.47885595 7.58314882 0.12093808]\n"
]
}
],
"source": [
"pareto1 = np.random.pareto(1.0, size=10)\n",
"print(pareto1)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-11-03T15:00:09.010119456Z",
"start_time": "2023-11-03T15:00:08.985865113Z"
}
},
"id": "423db763dfe8266e"
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
},
"id": "9efd8f9a713c156a"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}